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Abs t rac t  

This paper describes the geometry of complex space-times from the real point of view 
and presents some miscellaneous results on the existence and nature of real slices. 

t .  In t roduc t ion  

In this paper, I shall collect together some facts concerning the real 
geometry of complex Riemannian manifolds, and, in particular, I shall discuss 
the question of the existence of real slices in complexified space-times. This 
question is important in two contexts: 

(1) In quantum field theory, it is sometimes helpful analytically to continue 
objects such as propagators and formal path integral expressions from space- 
time to a positive definite Riemannian manifold, thought of as a real slice of 
complex space-time. For example, this can be done ha Minkowski and de Sitter 
space-times, and in the Schwarzschitd solution (Hartle and Hawking, 1976; 
Hawking and Gibbons, 1977). 

(2) In general the complex versions of Einstein's equations are easier to 
solve than their real forms (for example, see Plebanski and Robinson, 1976, 
and references cited therein). But, having found a complex solution 

ds 2 = gabdza dz  b (1.1) 

(where the metric coefficients gab are hotomorphic functions of the coordinates), 
one is faced with the problem of finding a real form of the metric, given by 
transforming to new coordinates w a = wa(z b) and restricting the wa's to real 
values. Only exceptional choices of new coordinates will lead to a real metric. 

I shall begin by recalling some elementary ideas about the relationship 
between real and complex manifolds (for more detail, see Kobayashi and 
Nomizu, 1969). 
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2. R e a l  and Complex  Manifolds  

( t )  An n-dimensional complex manifold can also be thought of as a 
2n-dimensional real manifold. 

(2) From an n-dimensional real analytic manifold, it is possible to construct 
n-dimensional complex manifolds by complexification. 

In the first case, one simply takes the real and imaginary parts x a andy a of  
a system of complex analytic coordinates z a = x a + iy a as real coordinates. 
This gives a 2n-dimensional real analytic manifold M with a complex structure 
J in the tangent space at each point. That is, J is a real tensor field of type (]) 
(one covariant and one contravariant index) satisfying 

j2 = - 1  or Y c f Y J  = - 6cJ (2.1) 

(Greek indices run over 1, 2 . . . . .  n). In the coordinates {x  a, ya} ,  j is given by 

= ~y~ and - - ~x a (2.2) 

(Roman indices run over 1, 2 , . . . ,  n). 
A real manifold equipped with such a tensor field (that is, with a complex 

structure in the tangent space at each point) is called an almos t  comp lex  mani- 
fold.  A necessary and sufficient condition that an almost complex manifold 
should be a complex manifold is that the torsion tensor S of J should vanish; 
S is the (~) tensor field defined by 

S(X,  Y ) =  2([JX,  J Y I  - IX, Y I  - J [ X ,  JY]  - J [ J X ,  Y ] )  (2.3) 

where X and Y are vector fields. In coordinates, 

= + J[~Jv],8) (2.4) 

When S vanishes, J is said to be integrable. The sufficiency of this condition is 
fairly easy to establish if it is assumed that M and J are real analytic, but with 
less stringent differentiability requirements the proof is much harder (see 
Kobayashi and Nomizu, 1969, p. 124). 

In the second case, starting with an n-dimensional real analytic manifold 
N, one constructs an n-dimensional complex manifold by allowing the co- 
ordinates to take on complex values and by analytically continuing the co- 
ordinate transformation maps. The resulting complex manifold M is also a 
2n-dimensional real analytic manifold in which N sits as an n-dimensional 
submanifold, given locally by 

Z a = ~a or ya = 0 (2.5) 

in the analytically continued coordinates z a = x a + iy a. 
ha general, this process is not unique and it only makes sense as defining a 

slight thickening of N into the complex (Shutrick, 1958). 
Conversely, given an n-dimensional complex manifold M, a real slice N of 

M is defined to be an n-dimensional real submanifold of M given locally by 
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z a = ~a in some system of complex analytic coordinates. In real terms, N is an 
n-dimensional submanifold of M (now thought of  as a 2n-dimensional real 
manifold) with the properties 
(1) N is real analytic 
(2) Vn ~N ,  TnM = TnN@J(TnN) [That is, Nis  totally real Equivalently, if 

X is tangent to N then JX is not tangent to N. That is, N has no (1,0)  
tangents 1.] 

3. Complex Riemannian Manifolds 

A complex Riemannian manifold or complex space-time is a complex mani- 
fold M (usually four-dimensional) together with a holomorphic metric g. In 
local complex coordinates z a, 

g =ga~(z)dz a ® dz ~ (3.1) 

with the coefficients gab holomorphic functions of the coordinates z a. 
In real terms, g is a complex-valued covariant tensor field on M which is 

(1) symmetric: g(X, Y)  =g(Y, X) for all vectors X and Y 
(2) of type (2,0): g(X, 1I") + ig(JX, Y)  = 0 V X, Y, that is, g annihilates all 

(13, 1) vectors 
(3) nondegenerate: g(X, Y)  - ig(JX, Y) = 0 ~' Yonly i fX  = 0 

(Note that all complex metrics have the same signature.) The tensor field 
g can be split into its real and imaginary parts: g = h + ik, where h and k are 
real covariant tensor fields on M (as a real manifold). Translating (1)-(3) into 
statements about h, k and the integrabte almost complex structure J we have 
the following: 

(1 ') h and k are symmetric: h(X, Y)  = h(Y, X )  and k(X, Y)  = k(Y, X)  for 
all vectors X and Y. 

(2') h(X, Y )=  k(JX, Y)and k(X, I1)=-h(JX,  Y ) V  X, Y. 
(3') h and k are nondegenerate. 

It follows from (2') that any two of h, k and J determine the third. Also from 
(2') we obtain the compatibility conditions 

h(JX, J Y )  = -h(X,  Y)  and k(JX, JY)  = -k(X,  Y)  VX,  Y (3.2) 

These imply that the real metrics h and k have signatures +, +, +, + . . . .  
(since J interchanges spacelike and timelike vectors for both h and k). 

Examples. 

(1) ds 2 = (dz1)  2 "t" (dz2)  2 + (dz3)  2 + (dz4)  2 

= [ ( d x l )  2 -t- (dx2)  2 + (dx3)  2 + (dx4)  2 - ( d y t )  2 - (dy2)  2 

- (dya)  2 -  (dy4) 2] + i[2(dx*dy 1 +dx2dy "~ +dxady 3 + dx4dy4)] 

I A (1, 0) vector X is a complex vector satisfying JX = iX. Similarly, a (0, 1) vector 
satisfies JX = -iX. 
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The metric in the first square bracket is h, that in the second is k. 
(2) (One complex dimension): If g = f(z)dz 2, where f = u + iv, then 

h a ~ = [  Uv - : ]  a n d k ~ =  [ :  - : 1  

4. Connections 

The holomorphic metric g defines a complex connection, denoted D: the 
corresponding Christoffel symbols are constructed from g in the same way as 
in a real space (Flaherty, 1976). In coordinate-free notation, let o~ = Oeadz a be 
a holomorphic 1-form. Then the covariant derivative Da = (OaO~b)dZ a @ dz b 
of c~ is defined by 

D~ = ½5CA (g) +da  (4.1) 

where A is the hotomorphic vector field given by Aagab = ~ .  
There are also deFmed on M the real connections V and V of the real 

metrics h and k. It follows immediately from equation (4.1) that 

D = ½( V + V ) (4.2) 

(as operators on holomorphic vectors and tensors) and hence that 

½(v+ )J=0 
[that is, ½(V + V ) is an almost complex connection]. Using this, and covari- 
antly differentiat~g the compatibility condition k(X, Y) = -k(JX, JY)  with 
respect to V and V for arbitrary vector fields Xand Y, one deduces that 

V k = 0 (4.3) 

Hence the two metric connections V and ~7 coincide, and J is parallel with 
respect to both. 

The converse is also true: 

t~oposition 1. Let M be a real even-dimensional manifold on which 
there is defined a metric h and an almost complex structure J satisfy- 
ing the compatibility condition h(X, Y) = -h(JX, JY)  V X, IT. Put 
g = h + ik, where k is defined by k(X, Y) = -h(JX, Y). Then (M, g) 
is a complex Riemannian manifold if, and only if, J is  parallel with 
respect to V (the metric connection of h). 

Proof. The "only if" part has already been established. To prove the con- 
verse, assume that V J = 0. Then J is integrable, and hence M is complex 
(an almost complex structure that is parallel with respect to a torsion-free 
affine connection is necessarily integrable; see Kobayashi and Nomizu, 1969, 
p. 145). Thus, it only remains to be shown that the equation V J = 0 also 
implies the Cauchy-Riemann equations for the components ofg. These can 
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be written in the form 

.17(g(Y, Z)) = 0 (4.4) 

for all holomorphic vector fields X, Y and Z. 
Let X and Ybe holomorphic vector fields. Then [X, T el = 0 and hence 

V x 17= 7 }-~X. Now, JX = iX and J Y  = - i Y .  Thus, exploiting the hypothesis 
that J is parallel with respect to V; 

- i ( V x ' 7 )  = S(Vx'Y) = ](V ~X)  = i V ~ X  (4.5) 

Therefore, 

V x Y = 0 = V ,TX (4.6) 

Hence, for any holomorphic vector fields X, Y, and Z, 

X(g(Y, Z)) = V2(g(Y, Z)) = 0 (47)  

which completes the proof. 

5. Real Slices 

A real slice of a complex n-dimensional space4ime (M, g) is an n-dimensional 
real analytic submanifold N c M with k]N = 0 and h IN nondegenerate. In other 
words, the metric g restricted to N is real and nondegenerate. 

In particular, a real slice of (M, g) is a totally null (or isotropic) n-surface 
with respect to k; however (see also Rosca and Vanhecke, 1976), we have the 
tbllowing: 

Proposition 2. A totally null n-surface in a 2n-dimensional pseudo- 
Riemannian manifold with signature +, +, .. • , - ,  - ,  • .. (equal numbers 
of plus and minus signs) is necessarily totally geodesic (that is, any 
geodesic that touches the surface also ties in the surface). 

Proof Let (M, k )be  a real pseudo-Riemannian manifold of dimension 2n 
and signature +, +, --- , - ,  - ,  - - - ,  and let N C M  be a totally null n-surface 
[that is, k(X, Y) = 0 whenever X and Y are tangent to N] .  Locally, N is given 
by the vanishing of n real functions u, v, w . . . . .  The vector fields U a = V au, 
V ~ = VeV, etc. are normal to N, and hence also tangent to N since N is 
n-dimensional (here V is the connection of the metric k, which is also used to 
raise and lower indices). Therefore, on N, 

0 = U(k(V, W)) = U~P~V~W~ + U~W~V~V~ (S.1) 

0 = V(k(W, U))= V~W~V~U~ + V~U~V~W~ (5.2) 
0 = W(k(U, V)) = WaU~V~V~ + 14~I/¢V~U5 (5.3) 

Also, V[aU~] = V[~ V~I = V [aWt~ l = 0. Hence, adding (5.1) and (5.2) and 
subtracting (5.3), we obtain 

U~V ~ V~W~ = 0 (5.4) 

Thus, each VuW is normal to N and hence also tangent to N. Finally, since 
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any vector field X tangent to N can be written in the form 

X = a U + b V +  ... 

for some functions a, b . . . . .  we conclude that V x Y  is tangent to N whenever 
X and Y are tangent to N and thus that N is totally geodesic (see Kobayashi and 
Nomizu, 1969, p. 56). 

In particular, it follows that there is at most one real slice through any 
point of M with any given tangent plane, and that the intersection of two real 
slices is a totally geodesic submanifold of both (with respect to the induced 
metric connections). 

Remarks. 1. A real slice N is necessarily an analytic submanifold of M since 
N is the image under the exponential map of the metric k or a real n-plane in 
the tangent space to Mat  any point of N, and the exponential map of a real 
analytic metric is real analytic. Further, N is also totally real since, if X and 
JX are tangent to N, then h(X, Y) = -k(JX, Y) = 0 for all Y tangent to N, 
implying X = 0 since h IN is nondegenerate. Hence a real slice is given locally 
by equation (2.5) in some complex coordinate system (see Shutrick, 1958). 
I am grateful to R. O. Wells for a discussion of this point. 

2. A practical method of ruling out the existence of a real slice through a 
given point of M is to observe that if there is a real slice through m E M then 
its tangent plane will define a complex conjugation in the space of holomorphic 
tangents to M at m, and that the curvature tensor o fg  must be invariant under 
this conjugation. In the two component spinor notation of Penrose (1968), 
such a conjugation takes different forms according to the signature of the real 
slice. Thus, for,a space-time real slice, the complex conjugate of a spinor a A is 
of the form ~A . In the positive definite case, it is ~A, and in the zero signature 
case, it is ~r 4. In particular, in the positive definite and zero signature cases, the 
conjugation does not interchange the self dual (~ABCDeA'B' eC'D') and anti- 
self dual (~A'B'C'D'eABeCD) parts of the Weyl curvature. Thus, for example, 
in type (2,2) space-times, where 

~ABCD = ~20(AOBtctD) and ~A'B'C'D' = O20(A 'OB'tC'tD') (5.6) 

there can only be positive definite or zero signature slices through points where 
the scalars if2 and if2 are real. 

6. Isotropic 4-Planes 

Consider the various possibilities for the tangent plane to N at a fixed point 
m EM. In the (real) tangent space TraM, we have the metric k and the complex 
structure 3". Since J defines an orientation for Tm M, there is also a natural 
volume element (8-form) e. 

Any 4-plane P C Tram that is isotropic with respect to k is spanned by four 
vectors A, B, C, D which are null and mutually orthogonal with respect to k. 
From these, we can construct a 4-form P with components 

t ~3"r~ =A[qB3C'rD ~1 (6.1) 
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This form is automatically either self-dual or anti-self-dual with respect to e 
and k. Thus there are two sorts of  totally null 4-plane [these correspond to 
the two sorts of  spinor for the group 0(4,  4); see Cartan (1966)] ,  

a planes for which P is self-dual 

/3 planes for which P is anti-self-dual 

The condition that P should contain no (0, 1) vectors is the condition that 
A,B,C~,JA,JB,JC, and JD should be linearly independent. In this case, it is 
possible to choose A, B, C, and D so that k(A, JA ) = + 1, k(A, JB) = 0 and so 
on. It is then not hard to see that P is an a plane or a 3 plane as 
k(A, JA)k(B, JB)k(C, JC)k(D, JD) is positive or negative. Thus, the possible 
signatures for h restricted to P are 

planes: + + + + , + + -  , 

/3 planes: + + + - ,  + - -  - 

The intersection of  two a planes or of  two t3 planes is always even dimens- 
ional, while the intersection of an a plane with a/3 plane is always odd 
dimensional (Cartan, 1966, p. 108). Combining this with the results of  Section 
5, it follows, for example, that  a positive definite real slice intersects a space- 
time real slice either in a single geodesic or in a totally geodesic spacelike 
hypersurface. 

7. Concluding Remarks 

Two consequences of  all this are 

(1) Twistor surfaces (totally null complex 2-surfaces in M)  are the limiting 
case of real slices where h IN also vanishes. This may be important in the 
search for a method of  passing from single graviton space-times (Penrose, 
1976), which contain either a or/3 twistor surfaces according to helicity, to 
real space-times. 

(2) Analytic continuation from space-times to Riemannian real slices is, in 
a sense, a more global procedure than, for example, continuation from + + + + 
signature to + + -  - signature since the tangent planes of  positive definite and 
space-time slices belong to different families. 
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